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ABSTRACT 

Preliminary results of a finite element analysis for the SINQ proton beam 
window are presented. Temperatures and stresses are calculated in an 
axisymmetric model. As a result of these calculations, the H&cooled 
window (safety window) could be redesigned in such a way that plastic 
deformation resulting from excessive stress in some areas is avoided. 

I. Introduction 

A thermal and structural analysis of the proposed design for the proton-beam window for the SINQ 
Pb-Bi target has been performed using the commercial engineering analysis system ANSYS [l]. A 
full description of the window design is given elsewhere 121. In brief, the overall assembly consists of 
two parts (see Fig 1): an inner window cooled on one side by the flow of the target Pb-Bi and an 
outer safety window made from two plates with water flowing between. The interspace has a He-flow 
(which plays no role in the cooling) and the whole assembly is to allow passage of the proton beam 
from vacuum to the target whilst also supporting the Pb-Bi. The main objects of the present study 
are the estimation of primary operational limits and safety margins for the window. 
The temperatures and stresses depend upon the current density of the proton beam. In normal oper- 
ation, all the beam passes through the up-stream meson target (Target E) and gives a peak current 
density of 25pA/ cm* at the design current of 1500pA. Under certain operating conditions a part of 
the beam will bypass Target E and result in long-term peak current densities of up to 105pA/cm*. 

In the worst case, the full beam misses Target E giving a peak current density of up to 265pA/cm*: 

such an extreme fault condition is expected to be rare and to last for only a short time. 
In the following analysis a safety factor 1 3.5, based upon the yield strength, has been calculated for 
the PbBi-cooled window and for peak current densities of up to 105~A/cm*. The HzO-cooled window 
(safety window) can, with slight design changes, have a safety factor of 2 2. 
At the extreme fault condition, where a peak current density of 265pA/cm2 is expected, the stresses 
in the PbBi-cooled window exceed the yield strength within a radius 5 12mm and plastic deformation 
occurs: this is due to the high peak temperature (about 83OOC). 
A brief description of the model details will be given in section 2. In section 3 temperatures and 
stresses are calculated for a peak current density of lOEipA/cm *. In section 4 the second HzO-cooled 
window design changes to avoid excessive stresses are discussed. The window stresses under the ex- 
treme fault condition (peak current density of up to 265pA/cm*) will be discussed in section 5. 
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II. Model Details 

The analysis has been performed with an axisymmetric’model: the outlines of the ikite element model, 
which corresponds to the proposed vfindow design, is shown in-Fig I.’ The‘materfal properties of the 
selected steel X 2OCrMoVl 21 ( DIN 1.4922 )-are given belowi 

: 

Elastic modulus 206 kN/mma 

Poisson ratio : : 0.3 
Thermal conductivity 0.624 ~(rnt@‘C 1 _ ” 1 
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Figure 1:. Outlines of the axisymmetric finite element model used in the present analysis. 

II.1 Power Deposition 
. 

The power density distribution is approximated by a two-component gaussian and calculated as a 
function of radius r with the following equation: 
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where 

IO = 1500 pA is the maximum total current,, 

E, = 1.69 W//LA) mm, the energy deposition by ionisation-loss, 
ur = 13.4 mm, the S.D. of the fraction by-passing Target E, 

Q2 = 43.6 mm, the S.D. of the ‘normal’ beam and 

90 = 0.016 W/mm3. 

The above equation takes account of a part-, E, of the beam bypassing Target E, which produces a 
smaller beam spot with a standard deviation of ~1. The uniform background contribution q,, comes 
from neutrons, gammas etc. backscattered from the target {3]. 

II.2 Heat Transfer on the PbBi-cooled Window 

The heat transfer coefficients for the PbBi-cooled surface were derived from a thermal-hydraulic 
culation [4] and are given in tabular form as a function of radius. 

cal- 

rh4 ..:o 1 2 3 4 5 7.5 > 10 ’ 

h(mW/tim2/OC);: 0 4.7 6.7 7.5 8.0 8.4 9.1 9.3 : 

A constant bulk temperature (Z’pbBi .s 226°C) for the PbBi in the region of the window has been 
assumed. 

II.3 Heat Transfer on the H&?-cooled Window 

The film heat transfer coefficient on the HsC-cooled surfaces are derived from a modified Dittus- 
Boeiter equation [5] which takes’into.account the thermal entrance length of the heated region. 
For subcooled boiling, the Shah-correlation [6) has been used. Two regimes of subcooled boiling are 
defined: the low subcooling regime where the following equation holds:- 

* = \E, 

and the high subcooling regime 

s=*,+* 

‘3 is defined as: 

“=x?x 

and g,, is the value of 9 at zero subcooling and given by: 

\E 0 = 230B0°*’ Bo 2 0.3 lo? * 

9 o = 1 + 46B0°.’ Bo 5 0.3 lo-* 
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The transition point between the two regimes has been calculated by the Saha-Zuber correlation [7]: 

When Pe < 70000 

2 

(AT,&+ = o.oo22qdk/A,l 

when Pe ~-70000 

. 

(AL& = 
. 

154.&/(Pe~p) ., 

The cooling of the safety window can be supplied either by the main coohng circuit-for the target 

@-bulk = 128OC) or by a separate circtit (Tbu(k = 4OOC). The predicted heat transfer coefficients, for 
both bulk temperatures and for different fiuid velocities and pressures, are tabulated below. A thermal 
entrance length of Xl = 3cm has been used to calculate the film heat transfer coefficient: the value 
of Xl corresponds approximately to the full-width half-maximum of thebeam~bypassing Target E. A 
constant bulk temperature is assumed in the flow direction. The critical heat flux has been estimated 
from the empirical formula given by SMirshak [8]: 

_ ‘_ . 

qchf = 151(1+ O.l197v)(l+ O.O0914AhT,& 

5 5 AT,d(,C) 5 75 1.5 5 v(m/sec) 5 14 
* 

. 

+ 0.186p) (W/cm2) 

1.7 5 p(h) 5 6.2 

. ; 

Heat transfer for the H20-cooled window (dl = 277~71) 

case %tdk Tazt ~~20 Vfluid Xl 4 Q&f 

“C “C bar m/set cm W/cm2joC W/cm2 
a) 40 180 10 2 3 1.4 1220 

.’ b) i ,, i ,I c- ,, j. 4 i )S i 2.6 1450 
c) t 11 ,,, ‘n t ._ S.-t ,> 3.7 ” 1690 

I 4 128 ” ” 2 ‘, .2.0 796 
e) ” ” ” 4 3.5 940 
f) ” ,’ I’ 6.. ’ 4.8 1100 
i r I 40 160 6.2 2 ” 

h) ” ” ” 4 ” 

1.4 840 
2~6 1000 

s I 

i) I,.” t ” ” 
t 6 ‘I?‘[ 3.7 -I 1170 

j j 

I I t 

128 ” ’ 2 ” 2.0 520 
h) ” ” ” 4 ” 315 620 
1) ” ” .“.. 6.. ” .4.8.. ~?20. 

.! 

The wall temperatures T,,, for the two windows as a function of the heat flux q are shown in Figs 2 & 3. 
As can be seen in these figures, case b) or c) should be chosen to avoid. subcooled boiling at a current 
density of 105pA/cm2: this corresponds to a.he+t &IX of 355W/cm2 for the 2mm thick window. In 
the stress analysis, only case b) has been used to calculate the temperature distribution within the 
H’zO-cooled window. 



Figure 2: Wall temperature T,,,(“C) vs heat flux q(W/cn*): T&,,& = 40”C,p~20 = lObar 

Figure 3: Wall temperature T,(“C) vs heat flux q(W/cm*): Tb& = l28”C,p~20 = lObar 
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III. Thermal and Stress Analysis for a Peak Current Density 
of 105p&?z2 

In the following analysis it is assumed, that 33% of the beam bypasses Target E and gives a peak 
current density of ltE~A/cmr. 

III.1 Temperatures and Heat Flow 

The above load and boundary conditions have been used to calculate the temperature distribution 
within the structure. Pigs 4 & 5 show the surface temperature of the IIZO-cooled safety window and 
the PbBi-cooled window respectively as a function of distance along the surface to the center. The 
calculated heat flow from the structure to the fluids inside (r 5 80mm) and outside the beam region 
(r 18Omm) are as follows: 

Heat flow to IjIzO : 

l’L Window element (r s 80mm) 5840 W 
2” Window element (p < 80mm) 5560 W 
Both Window elements (80 (: r < 90mm) 3310 W 

Heat flow to PbBi: 

Window element (r 5 80mk) 6720 W 
Window element (80 <, r 5 90mm) 1530 w 

Target-Tube 191 W/cm : 
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Figure 4: Temperature distribution (“C) of the HsO-cooled window plotted as a function of the dis- 
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Figure 5: Temperature distribution (“C) of the Pb~Bi-cooled window plotted as a function of the 
distance (mm) to its center. 

III.2 Stresses : 

A linear structural analysis based upon the calculated temperature distribution has been performed 
for the following static pressures: 

PH20 = 10 bar 

PHe = O&lo bar 

PPbBi = 5 bar 

In the Figs 6 & 7, the calculated component stresses S, for the two windows are plotted as a function 
of the distance along the surface to their centers. Here, S, represents the in-plane component stress in 
the radial direction. As can be seen in the figures, the main contribution comes from bending stress 
induced by the thermal’load. Prom the calculated stress distribution the von Mises stress has been 
used to evaluate a safety factor, based upon the temperature dependent yield strength. The stress 
maxima and corresponding safety factors are summarized below for the different load cases: 
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Von Mises Stress (N/mm2) and safety factor () 
-(ppbBi.= Zbar, pH20 = lObar) 

Load i thermal R’ko I yes ye= 
case pae(ber) 0 0 10 

l*:lY O-cooled z r < 50mm - 150 (3) - 
50 (3) - .- window Ir>50mmI( - j If 

2”dH90-coolkd I r < 50mm II 40 I 4?1(1 

I -‘---- 
v&ldow 

I. 
window 

n 1 \ 81) ‘432 (.88) 
r > 50mm 11 145 1 360 (1.3) 340 (1.4) 

00 100 I, , (3.5) (3.5) 
r > 50mm fl 100 ‘1 P90 (2.0) 170 (2.5) 

I PhBi-cooled I r < 50mm II 40 I U 

The safety factor in the center part of the PbBi-cooled window reaches a value > 3.5, while the second 
HzO-cooled window sbows.a safety factor < 1 at its center, where plastic deformation may occur. 
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Figure 6: Component stressesS,(N/ mni2) plotted along the surface of the 2”dX20-cooled window as 
a function of the ‘distance [ham) to its center (phi = Obbir). :. 
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the PbBi-cooled window as a 

IV. Redesign of the second HZO-cooled Window 

From the present studies the essential influence of the temperature’drop at the window center as well 
as at the flange to the stress level can be seen. Therefore, the following steps have been taken: 

l The thickness of the window has been decreased from 2 to lmm at its center and increased from 2 
to 4mm at its edge. This is done by changing the radius of the spherical surface of the He-side from 
the original 154mm to 141.7mm. 

l The nose of the support ‘flange has been removed. 

A thermal and stress analysis has been performed for this new geometry. The von Mises peak stress 
in the window now occurs at the edge and is 264N/mm2; at the center, the stress is reduced from 

471N/mn2 (with the original design) to 220N/mm 2. The corresponding safety factors, based upon 
the temperature dependent yield strength, are > 2 throughout ,the window. The component stresses 
S, plotted along the window surfaces are shown in.Fig g and may be compared with those for the 
original design in Fig 6. 

i 
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Figure 8: Component stre.sses SY(N/mn2) plotted along the surface of the redesigned 2”dH&cooled 
window as a function of the (mm) to its center (pi= = Ob&). . 

V. Thermal and Stress Analysis for a Peak Currerit Density 

of 265/~A/cm~ * 

In the following simulation, the extreme fault condition is assumed, where the full. beam bypasses 
Target E (E = 100%). The same boundary conditions have been used as in the previous calculations. 

. 

V.l Temperatures 

In Fig 9, the temperature response of the PbBi-cooled window at its center has been plotted as func- 
tion of time. At t = 0 the beam has been changed from normal operation (a peak current density of 
25j.~A/cm~) to 265jiA J cm2. The steady-state temperature distribution for each window is shown in the 
Figs 10 & 12. The surface temperature of the HrO-cooled window exceeds the saturation temperature 
of the liquid within a radius r 5 12 mm for the first and r <, 7 mm for the second window and the 
high subcooling regime starts. The heat flux from the fist window reaches a value of w 900 W/cm2 
but is less than the predicted critical heat flux. 
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Figure 9: Temperature response (“C) of the PbBi-cooled window at its center plo.tted as a functiop 
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V.2 Stresses 

In Fig 13, the von Mises stress has been plotted along the surfaces of the first HsO-cooled window as 
function of the distance to its center. The stress level is less than the allowable yield strength at the . 

corresponding temperature and at any position of the window. In Fig 14, the component stresses S, 
are plotted along the surfaces of the second HzO-cooled window. At the center, the von Mises stress 
exceeds slightly the yield strength within a local region. The component stresses S, along the surfaces 
of the PbBi-cooled window are shown in Fig 15. Within a path length 5 20 mm, corresponding to a 
radius 5 12 mm, plastic deformation occurs and stress relaxation is expected, due to the drop of the 
yield strength at the high peak temperatures of up to 830°C. The elastic limit is reached at - 550°C 
which is about 0.5sec after the current-density increase (see Fig 9). 
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VI. Conclusions 

The present study predicts adequate safety margins for peak current densities of up to 105~A/cm2 
and hence, safe long-term operation may be expected for both windows. For higher current densities, 
up to 265pA/cm2, the stresses stay well within the elastic range of the selected steel throughout the 
H20-cooled window. However, the present linear analysis shows that the stresses in the PbBi-cooled 
window exceed the elastic limit. Further investigations are required to allow prediction of the lifetime 
and failure mode of this window: these need to include non-linear analysis and load cycling as well as 
the change of the material properties due to irradiation effects. 

VII. Nomenclature 

AT,, = 
AT,,, = 

Tmit 

~bulr 

TtU 

9 

Q&f 
h 
Bo 
Pe 

Xl 
dl 
dh 

Xfl 

T rot - Tbulk subcooling 

Tw - Tat 
saturation temperature of fluid 
bulk temperature of fluid 
wall temperature 
heat flux, power density 
critical heat flux 
single phase heat transfer coefficient 
boiling number 
Peclet number 
thermal entrance length 
channel width of fluid 
hydraulic diameter 
thermal conductivity of fluid 
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